Package ‘Informeasure’

February 19, 2026
Type Package

Title R implementation of information measures
Version 1.20.0

Description This package consolidates a comprehensive set of information measurements, encom-
passing mutual information, conditional mutual information, interaction information, partial in-
formation decomposition, and part mutual information.

License Artistic-2.0

Depends R (>=4.0)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

biocViews GeneExpression, NetworkInference, Network, Software
Imports entropy

Suggests knitr, BiocStyle, rmarkdown, testthat (>= 3.0.0),
SummarizedExperiment

VignetteBuilder knitr
URL https://github.com/chupan1218/Informeasure

BugReports https://github.com/chupan1218/Informeasure/issues
Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/Informeasure

git_branch RELEASE_3_22

git_last_commit 12cc3ed

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-02-18

Author Chu Pan [aut, cre]

Maintainer Chu Pan <chu.pan@hnu.edu.cn>

https://github.com/chupan1218/Informeasure
https://github.com/chupan1218/Informeasure/issues

2 CMI.measure

Contents
CMLmeasure o i i it e e e e e e e e e e 2
CMLplugin e 3
discretizelD e 4
discretizeld.uniform_frequency oo 5
discretizeld.uniform_width 6
discretize2D L e 6
discretize2d.uniform_frequency o 7
discretize2d.uniform_width 8
discretize3D e 9
discretize3d.uniform_frequency 10
discretize3d.uniform_width L 11
ILmeasure e e e 11
ILplugin 13
MLmeasure e e e e 14
MIplugin e 15
PID.measure e e 16
PID.plugin. o e 17
PMLmeasure e e e e e 18
PMLplugin e 19

Index 21

CMI.measure

A comprehensive function for estimating conditional mutual informa-
tion

Description

The CMI.measure

function is used to calculate the expected mutual information between two ran-

dom variables conditioned on the third one from the joint count table.

Usage

CMI.measure(
XYZ,

method = c("ML", "Jeffreys”, "Laplace”, "SG", "minimax", "shrink"),

lambda.probs,

unit = c("log", "log2", "logl0"),
verbose = TRUE

Arguments
XYz
method
lambda. probs

unit

verbose

a joint count distribution table of three random variables.
six probability estimation algorithms are available, "ML" is the default.
the shrinkage intensity, only called when the probability estimator is "shrink".

the base of the logarithm. The default is natural logarithm, which is "log". For
evaluating entropy in bits, it is suggested to set the unit to "log2".

a logic variable. if verbose is true, report the shrinkage intensity.

CMI.plugin 3

Details

Six probability estimation methods are available to evaluate the underlying bin probability from
observed counts:

method = "ML": maximum likelihood estimator, also referred to empirical probability,

method = "Jeffreys": Dirichlet distribution estimator with prior a = 0.5,

method = "Laplace": Dirichlet distribution estimator with prior a = 1,

method = "SG": Dirichlet distribution estimator with prior a = 1/length(XY),

method = "minimax": Dirichlet distribution estimator with prior a = sqrt(sum(XY))/length(XY),
method = "shrink": shrinkage estimator.

Value

CMI.measure returns the conditional mutual information.

References

Hausser, J., & Strimmer, K. (2009). Entropy Inference and the James-Stein Estimator, with
Application to Nonlinear Gene Association Networks. Journal of Machine Learning Research,
1469-1484.

Examples

three numeric vectors corresponding to three continuous random variables
x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.9, 9.0)
z <- c(3.0, 7.0, 2.0, 11, 10, 10, 14, 2.0, 11)

corresponding joint count table estimated by "uniform width” algorithm
XYZ <- discretize3D(x, y, z, "uniform_width")

corresponding conditional mutual information
CMI.measure(XYZ)

CMI.plugin A plug-in calculator for evaluating conditional mutual information

Description

CMI.plugin measures the expected mutual information between two random variables conditioned
on the third one from the joint probability distribution table.

Usage
CMI.plugin(probs, unit = c("log", "log2", "logl@"))

Arguments
probs the joint probability distribution table of three random variables.
unit the base of the logarithm. The default is natural logarithm, which is "log". For

evaluating entropy in bits, it is suggested to set the unit to "log2".

4 discretizel1 D

Value

CMI.plugin returns the conditional mutual information.

References

Wyner, A. D. (1978). A definition of conditional mutual information for arbitrary ensembles. In-
formation & Computation, 38(1), 51-59.

Examples

three numeric vectors corresponding to three continuous random variables
X <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
y <- c(1.0, 2.0, 12, 8.0, 1.9, 9.0, 0.0, 3.0, 9.0)
z <- ¢(3.0, 7.0, 2.0, 11, 10, 10, 14, 2.0, 11)

corresponding joint count table estimated by "uniform width” algorithm
count_xyz <- discretize3D(x, y, z, "uniform_width")

the joint probability distribution table of the count data
library("entropy"”)
probs_xyz <- fregs.empirical(count_xyz)

corresponding conditional mutual information
CMI.plugin(probs_xyz)

discretizelD Discretize one-dimensional continuous data into bins

Description

The function of discretize1D is used to assign the observations of a set of continuous random vari-
ables to bins, and returns a corresponding one-dimensional count table. Two of the most common
discretization methods are available: "uniform width" and "uniform frequency".

Usage

discretizelD(x, algorithm = c("uniform_width"”, "uniform_frequency”))
Arguments

X a numeric vector of the random variable x.

algorithm two discretization algorithms are available, "uniform_width" is the default.
Details

Uniform width-based method ("uniform_width") divides the continuous data into N bins with equal
width, while Uniform frequency-based method ("uniform_frequency") divides the continuous data
into N bins with (approximate) equal count number. By default in both methods, the number of bins
N is initialized into a round-off value according to the square root of the data size.

Value

discretize1D returns a one-dimensional count table.

discretizeld.uniform_frequency 5

Examples

a numeric vector corresponding to a continuous random variable
x <- c(0.0, 0.2, 0.2, 0.7, 9.9, 0.9, 0.9, 0.9, 1.0)

corresponding count table estimated by "uniform width” algorithm
discretizelD(x, "uniform_width")

corresponding count table estimated by "uniform frequency” algorithm
discretizelD(x, "uniform_frequency”)

discretizeld.uniform_frequency
Discretize a set of continuous data into 1-dimensional bins by uniform
frequency

Description

discretize 1d.uniform_frequency assigns the observations of a continuous random variables to bins
according to the "uniform frequency" method, and returns a corresponding count table.

Usage

discretizeld.uniform_frequency(x)

Arguments

X a numeric vector of a random variable.

Details

Uniform frequency-based method ("uniform_frequency") divides the continuous data into N bins
with (approximate) equal count number. The number of bins N is initialized into a round-off value
according to the square root of the data size.

Value

discretizeld.uniform_frequency returns a one-dimensional count table.

Examples

a numeric vector corresponding to a continuous random variable
x <- c(0.0, 0.2, 0.2, 0.7, 9.9, 0.9, 0.9, 0.9, 1.0)

corresponding count table estimated by "uniform frequency” algorithm
discretizeld.uniform_frequency(x)

6 discretize2D

discretizeld.uniform_width
Discretize a set of continuous data into 1-dimensional bins by "uni-
form width" method

Description
discretize 1d.uniform_width assigns the observations of continuous random variables to bins accord-
ing to the "uniform width" method, and returns a corresponding count table.

Usage

discretizeld.uniform_width(x)

Arguments

X a numeric vector of a random variable.

Details

Uniform width-based method ("uniform_width") divides the continuous data into N bins with equal
width. The number of bins N is initialized into a round-off value according to the square root of the
data size.

Value

discretize1d.uniform_width returns a count table.

Examples

a numeric vector corresponding to a continuous random variable
X <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)

corresponding count table estimated by "uniform width” algorithm
discretizeld.uniform_width(x)

discretize2D Discretize 2-dimensional continuous data into bins

Description

The function of discretize2D is used to assign the observations of two sets of continuous random
variables to bins, and returns a corresponding two-dimensional count table. Two of the most com-
mon discretization methods are available: "uniform width" and "uniform frequency".

Usage

discretize2D(x, y, algorithm = c("uniform_width"”, "uniform_frequency"))

discretize2d.uniform_frequency 7

Arguments

X a numeric vector of the random variable x.

y a numeric vector of the random variable y.

algorithm two discretization algorithms are available, "uniform_width" is the default.
Details

Uniform width-based method ("uniform_width") divides the continuous data into N bins with equal
width, while Uniform frequency-based method ("uniform_frequency") divides the continuous data
into N bins with (approximate) equal count number. By default in both methods, the number of bins
N is initialized into a round-off value according to the square root of the data size.

Value

discretize2D returns a 2-dimensional count table.

Examples

two numeric vectors that correspond to two continuous random variables
X <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.0, 9.0)

corresponding count table estimated by "uniform width” algorithm
discretize2D(x,y, "uniform_width")

corresponding count table estimated by "uniform frequency” algorithm
discretize2D(x,y, "uniform_frequency")

discretize2d.uniform_frequency
Discretize two sets of continuous data into 2-dimensional bins by uni-
form frequency

Description

discretize2d.uniform_frequency assigns the observations of two continuous random variables to
bins according to the "uniform frequency" method, and returns a corresponding 2-dimensional count
table.

Usage

discretize2d.uniform_frequency(x, y)

Arguments

X a numeric vector of the first random variable.

\% a numeric vector of the second random variable.

8 discretize2d.uniform_width

Details

Uniform frequency-based method ("uniform_frequency") divides the continuous data into N bins
with (approximate) equal count number. The number of bins N is initialized into a round-off value
according to the square root of the data size.

Value

discretize2d.uniform_frequency returns a 2-dimensional count table.

Examples

two numeric vectors corresponding to two continuous random variables
x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.9, 3.0, 9.0)

corresponding joint count table estimated by "uniform frequency” algorithm
discretize2d.uniform_frequency(x,y)

discretize2d.uniform_width
Discretize two sets of continuous data into 2-dimensional bins by "uni-
form width" method

Description

discretize2d.uniform_width assigns the observations of two continuous random variables to bins
according to the "uniform width" method, and returns a corresponding 2-dimensional count table.

Usage

discretize2d.uniform_width(x, y)

Arguments

X a numeric vector of the first random variable.

y a numeric vector of the second random variable.
Details

Uniform width-based method ("uniform_width") divides the continuous data into N bins with equal
width. The number of bins N is initialized into a round-off value according to the square root of the
data size.

Value

discretize2d.uniform_width returns a 2-dimensional count table.

discretize3D 9

Examples

two numeric vectors corresponding to two continuous random variables
X <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
y <- c(1.0, 2.0, 12, 8.9, 1.9, 9.0, 0.0, 3.0, 9.0)

corresponding joint count table estimated by "uniform width” algorithm
discretize2d.uniform_width(x,y)

discretize3D Discretize 3-dimensional continuous data into bins

Description

The function of discretize3D is used to assign the observations of three sets of continuous random
variables to bins, and returns a corresponding three-dimensional count table. Two of the most
common discretization methods are available: "uniform width" and "uniform frequency".

Usage

discretize3D(x, y, z, algorithm = c("uniform_width”, "uniform_frequency"”))
Arguments

X a numeric vector of the random variable x.

y a numeric vector of the random variable y.

a numeric vector of the random variable z.

algorithm two discretization algorithms are available, "uniform_width" is the default.

Details

Uniform width-based method ("uniform_width") divides the continuous data into N bins with equal
width, while Uniform frequency-based method ("uniform_frequency") divides the continuous data
into N bins with (approximate) equal count number. By default in both methods, the number of bins
N is initialized into a round-off value according to the square root of the data size.

Value

discretize3D returns a 3-dimensional count table.

Examples
three vectors that correspond to three continuous random variables
x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.0, 9.0)
z <- c(3.0, 7.0, 2.0, 11, 10, 10, 14, 2.0, 11)

corresponding count table estimated by "uniform width” algorithm
discretize3D(x,y,z, "uniform_width")

corresponding count table estimated by "uniform frequency” algorithm
discretize3D(x,y,z, "uniform_frequency")

10 discretize3d.uniform_frequency

discretize3d.uniform_frequency
Discretize three sets of continuous data into 3-dimensional bins by
uniform frequency

Description

discretize3d.uniform_frequency assigns the observations of three continuous random variables to
bins according to the "uniform frequency" method, and returns a corresponding 3-dimensional count
table.

Usage

discretize3d.uniform_frequency(x, y, z)

Arguments
X a numeric vector of the first random variable.
y a numeric vector of the second random variable.
z a numeric vector of the third random variable.
Details

Uniform frequency-based method ("uniform_frequency") divides the continuous data into N bins
with (approximate) equal count number. The number of bins N is initialized into a round-off value
according to the square root of the data size.

Value

discretize3d.uniform_frequency returns a 3-dimensional count table.

Examples

three numeric vectors corresponding to three continuous random variables
x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.9, 9.0)
z <- c(3.0, 7.0, 2.0, 11, 10, 10, 14, 2.0, 11)

corresponding joint count table estimated by "uniform frequency” algorithm
discretize3d.uniform_frequency(x,y,z)

discretize3d.uniform_width 11

discretize3d.uniform_width
Discretize three sets of continuous data into 3-dimensional bins by
"uniform width" method

Description

discretize3d.uniform_width assigns the observations of three continuous random variables to bins
according to the "uniform width" method, and returns a corresponding 3-dimensional count table.

Usage

discretize3d.uniform_width(x, y, z)

Arguments
X a numeric vector of the first random variable.
y a numeric vector of the second random variable.
z a numeric vector of the third random variable.
Details

The uniform width-based method ("uniform_width") that divides the continuous data into N bins
with equal width. The number of bins is initialized into a round-off value according to the square
root of the data size.

Value

discretize3d.uniform_width returns a 3-dimensional count table.

Examples

three numeric vectors corresponding to three continuous random variables
X <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.9, 9.0)
z <- c(3.0, 7.0, 2.0, 11, 10, 10, 14, 2.0, 11)

corresponding joint count table estimated by "uniform width” algorithm
discretize3dd.uniform_width(x,y,z)

II.measure A comprehensive function for evaluating interaction information

Description

The II.measure function is used to calculate the amount information contained in a set of variables
from the joint count table. The number of variables here is limited to three.

12 II.measure

Usage

II.measure(
XYz,
method = c("ML", "Jeffreys”, "Laplace”, "SG", "minimax", "shrink"),
lambda.probs,
unit = c("log”, "log2", "loglo"),
verbose = TRUE

)
Arguments
XYz a joint count distribution table of three random variables.
method six probability estimation algorithms are available, "ML" is the default.

lambda.probs the shrinkage intensity, only called when the probability estimator is "shrink".

unit the base of the logarithm. The default is natural logarithm, which is "log". For
evaluating entropy in bits, it is suggested to set the unit to "log2".
verbose a logic variable. if verbose is true, report the shrinkage intensity.
Details

Six probability estimation methods are available to evaluate the underlying bin probability from
observed counts:

method = "ML": maximum likelihood estimator, also referred to empirical probability,

method = "Jeffreys": Dirichlet distribution estimator with prior a=0.5,

method = "Laplace": Dirichlet distribution estimator with prior a = 1,

method = "SG": Dirichlet distribution estimator with prior a = 1/length(XY),

method = "minimax": Dirichlet distribution estimator with prior a = sqrt(sum(XY))/length(XY),
method = "shrink": shrinkage estimator.

Value

II.measure returns the interaction information.

References
Hausser, J., & Strimmer, K. (2009). Entropy Inference and the James-Stein Estimator, with Applica-
tion to Nonlinear Gene Association Networks. Journal of Machine Learning Research, 1469-1484.

Mcgill, W. J. (1954). Multivariate information transmission. Psychometrika, 19(2), 97-116.

Examples

three numeric vectors corresponding to three continuous random variables
x <- c(0.0, 0.2, 0.2, 0.7, 9.9, 0.9, 0.9, 0.9, 1.9)
y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.0, 9.0)
z <- c(3.0, 7.0, 2.0, 11, 1o, 10, 14, 2.0, 11)

corresponding joint count table estimated by "uniform width” algorithm
XYZ <- discretize3D(x, y, z, "uniform_width")

corresponding interaction information
II.measure(XYZ)

1. plugin 13

II.plugin A plug-in calculator for evaluating the interaction information

Description

IL.plugin measures the amount information contained in a set of variables from the joint probability
distribution table. The number of variables here is limited to three.

Usage

II.plugin(probs, unit = c("log”, "log2", "logl@"))

Arguments
probs the joint probability distribution table of three random variables.
unit the base of the logarithm. The default is natural logarithm, which is "log". For
evaluating entropy in bits, it is suggested to set the unit to "log2".
Value

II.plugin returns the interaction information.

References

Mcgill, W. J. (1954). Multivariate information transmission. Psychometrika, 19(2), 97-116.

Examples

three numeric vectors corresponding to three continuous random variables
X <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.0, 9.0)
z <- ¢(3.0, 7.0, 2.0, 11, 1o, 10, 14, 2.0, 11)

corresponding joint count table estimated by "uniform width” algorithm
count_xyz <- discretize3D(x, y, z, "uniform_width")

the joint probability distribution table of the count data
library("entropy")
probs_xyz <- freqgs.empirical(count_xyz)

corresponding interaction information
II.plugin(probs_xyz)

14 MI.measure

MI.measure A comprehensive function for evaluating mutual information

Description

The MI.measure function is used to calculate the mutual information between two random variables
from the joint count table.

Usage

MI.measure(
XY,
method = c("ML", "Jeffreys"”, "Laplace”, "SG", "minimax", "shrink"),
lambda.probs,
unit = c("log”, "log2", "logl0"),
verbose = TRUE

)
Arguments
XY a joint count distribution table of two random variables.
method six probability estimation algorithms are available, "ML" is the default.

lambda.probs the shrinkage intensity, only called when the probability estimator is "shrink".

unit the base of the logarithm. The default is natural logarithm, which is "log". For
evaluating entropy in bits, it is suggested to set the unit to "log2".
verbose a logic variable. if verbose is true, report the shrinkage intensity.
Details

Six probability estimation methods are available to evaluate the underlying bin probability from
observed counts:

method = "ML": maximum likelihood estimator, also referred to empirical probability,

method = "Jeffreys": Dirichlet distribution estimator with prior a = 0.5,

method = "Laplace": Dirichlet distribution estimator with prior a = 1,

method = "SG": Dirichlet distribution estimator with prior a = 1/length(XY),

method = "minimax": Dirichlet distribution estimator with prior a = sqrt(sum(XY))/length(XY),
method = "shrink": shrinkage estimator.

Value

MI.measure returns the mutual information.

References

Hausser, J., & Strimmer, K. (2009). Entropy Inference and the James-Stein Estimator, with Applica-
tion to Nonlinear Gene Association Networks. Journal of Machine Learning Research, 1469-1484.

Wyner, A. D. (1978). A definition of conditional mutual information for arbitrary ensembles. In-
formation & Computation, 38(1), 51-59.

MI.plugin 15

Examples
two numeric vectors corresponding to two continuous random variables
x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.0, 9.0)

corresponding joint count table estimated by "uniform width” algorithm
XY <- discretize2D(x, y, "uniform_width")

corresponding mutual information
MI.measure(XY)

MI.plugin A plug-in calculator for evaluating mutual information

Description
MI.plugin measures the mutual information between two random variables from the joint probabil-
ity distribution table.

Usage

MI.plugin(probs, unit = c("log"”, "log2", "logl@"))

Arguments
probs the joint probability distribution table of two random variables.
unit the base of the logarithm. The default is natural logarithm, which is "log". For
evaluating entropy in bits, it is suggested to set the unit to "log2".
Value

MI.plugin returns the mutual information.

Examples

two numeric vectors corresponding to two continuous random variables
x <- c(0.0, 0.2, 0.2, 0.7, 9.9, 0.9, 0.9, 0.9, 1.9)
y <- c(1.0, 2.0, 12, 8.0, 1.9, 9.0, 0.0, 3.0, 9.0)

corresponding joint count table estimated by "uniform width” algorithm
count_xy <- discretize2D(x, y, "uniform_width")

the joint probability distribution table of the count data
library("entropy")
probs_xy <- fregs.empirical(count_xy)

corresponding mutual information
MI.plugin(probs_xy)

16 PID.measure

PID.measure A comprehensive function for evaluating the partial information de-
composition

Description

The PID.measure function is used to decompose two source information acting on the common
target into four parts: joint information (synergy), unique information from source x, unique infor-
mation from source y and shared information (redundancy). The input of the PID.measure is the
joint count table.

Usage

PID.measure(
XYZ,
method = c("ML", "Jeffreys”, "Laplace”, "SG", "minimax", "shrink"),
lambda.probs,
unit = c("log”, "log2", "logle"),
verbose = TRUE

)
Arguments
XYZ a joint count distribution table of three random variables
method six probability estimation algorithms are available, "ML" is the default.

lambda.probs the shrinkage intensity, only called when the probability estimator is "shrink".

unit the base of the logarithm. The default is natural logarithm, which is "log". For
evaluating entropy in bits, it is suggested to set the unit to "log2".
verbose a logic variable. if verbose is true, report the shrinkage intensity.
Details

Six probability estimation methods are available to evaluate the underlying bin probability from
observed counts:

method = "ML": maximum likelihood estimator, also referred to empirical probability,

method = "Jeffreys": Dirichlet distribution estimator with prior a = 0.5,

method = "Laplace": Dirichlet distribution estimator with prior a = 1,

method = "SG": Dirichlet distribution estimator with prior a = 1/length(XY),

method = "minimax": Dirichlet distribution estimator with prior a = sqrt(sum(XY))/length(XY),
method = "shrink": shrinkage estimator.

Value

PID.measure returns a list that includes synergistic information, unique information from x, unique
information from y, redundant information and the sum of the four parts of information.

PID.plugin 17

References

Hausser, J., & Strimmer, K. (2009). Entropy Inference and the James-Stein Estimator, with Applica-
tion to Nonlinear Gene Association Networks. Journal of Machine Learning Research, 1469-1484.

Williams, P. L., & Beer, R. D. (2010). Nonnegative Decomposition of Multivariate Information.
arXiv: Information Theory.

Chan, T. E., Stumpf, M. P, & Babtie, A. C. (2017). Gene Regulatory Network Inference from
Single-Cell Data Using Multivariate Information Measures. Cell Systems, 5(3).

Examples

three numeric vectors corresponding to three continuous random variables
x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.0, 9.0)
z <- ¢(3.09, 7.0, 2.0, 11, 1o, 10, 14, 2.0, 11)

corresponding joint count table estimated by "uniform width” algorithm
XYZ <- discretize3D(x, y, z, "uniform_width")

corresponding partial information decomposition
PID.measure(XYZ)

corresponding count table estimated by "uniform frequency” algorithm
XYZ <- discretize3D(x, y, z, "uniform_frequency")

corresponding partial information decomposition
PID.measure(XYZ)

PID.plugin A plug-in calculator for evaluating partial information decomposition

Description

PID.plugin decomposes two source information acting on the common target into four parts: joint

information (synergy), unique information from source x, unique information from source y and

shared information (redundancy). The input of PMI.plug is the joint probability distribution table.
Usage

PID.plugin(probs, unit = c("log”, "log2"”, "logl10"))

Arguments
probs the joint probability distribution of three random variables.
unit the base of the logarithm. The default is natural logarithm, which is "log". For
evaluating entropy in bits, it is suggested to set the unit to "log2".
Value

PID.plugin returns a list that includes synergistic information, unique information from source X,
unique information from source y, redundant information and the sum of the four parts of informa-
tion.

18 PMI.measure

References

Williams, P. L., & Beer, R. D. (2010). Nonnegative Decomposition of Multivariate Information.
arXiv: Information Theory.

Chan, T. E., Stumpf, M. P, & Babtie, A. C. (2017). Gene Regulatory Network Inference from
Single-Cell Data Using Multivariate Information Measures. Cell systems, 5(3).

Examples

three numeric vectors corresponding to three continuous random variables
x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.0, 9.0)
z <- c(3.0, 7.0, 2.0, 11, 10, 10, 14, 2.0, 11)

corresponding joint count table estimated by "uniform width” algorithm
count_xyz <- discretize3D(x, y, z, "uniform_width")

the joint probability distribution table of the count data
library("entropy")
probs_xyz <- freqgs.empirical(count_xyz)

corresponding partial information decomposition
PID.plugin(probs_xyz)

PMI.measure A comprehensive function for evaluating part mutual information

Description

The PMI.measure function is used to calculate the non-linearly direct dependencies between two
variables conditioned on the third one form the joint count table.

Usage

PMI.measure(
XYZ,
method = c("ML", "Jeffreys”, "Laplace”, "SG", "minimax", "shrink"),
lambda.probs,
unit = c("log”, "log2", "logl0"),
verbose = TRUE

)
Arguments
XYZ a joint count distribution table of three random variables.
method six probability estimation algorithms are available, "ML" is the default.

lambda.probs the shrinkage intensity, only called when the probability estimator is "shrink".

unit the base of the logarithm. The default is natural logarithm, which is "log". For
evaluating entropy in bits, it is suggested to set the unit to "log2".

verbose a logic variable. if verbose is true, report the shrinkage intensity.

PMI.plugin 19

Details

Six probability estimation methods are available to evaluate the underlying bin probability from
observed counts:

method = "ML": maximum likelihood estimator, also referred to empirical probability,

method = "Jeffreys": Dirichlet distribution estimator with prior a = 0.5,

method = "Laplace": Dirichlet distribution estimator with prior a = 1,

method = "SG": Dirichlet distribution estimator with prior a = 1/length(XY),

method = "minimax": Dirichlet distribution estimator with prior a = sqrt(sum(XY))/length(XY),
method = "shrink": shrinkage estimator.

Value

PMI.measure returns the part mutual information.

References

Hausser, J., & Strimmer, K. (2009). Entropy Inference and the James-Stein Estimator, with Applica-
tion to Nonlinear Gene Association Networks. Journal of Machine Learning Research, 1469-1484.

Zhao, J., Zhou, Y., Zhang, X., & Chen, L. (2016). Part mutual information for quantifying direct
associations in networks. Proceedings of the National Academy of Sciences of the United States of
America, 113(18), 5130-5135.

Examples
three numeric vectors corresponding to three continuous random variables
x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.0, 9.0)
z <- c(3.0, 7.0, 2.0, 11, 10, 10, 14, 2.0, 11)

corresponding joint count table estimated by "uniform width” algorithm
XYZ <- discretize3D(x, y, z, "uniform_width")

corresponding part mutual information
PMI.measure(XYZ)

PMI.plugin A plug-in calculator for evaluating the part mutual information

Description
PMI.plug measures the non-linearly direct dependencies between two variables conditioned on the
third one form the joint probability distribution table.

Usage
PMI.plugin(probs, unit = c("log", "log2", "logl10@"))

Arguments
probs the joint probability distribution table of three random variables.
unit the base of the logarithm. The default is natural logarithm, which is "log". For

evaluating entropy in bits, it is suggested to set the unit to "log2".

20 PMI.plugin

Value

PMI.plugin returns the part mutual information.

References

Zhao, J., Zhou, Y., Zhang, X., & Chen, L. (2016). Part mutual information for quantifying direct
associations in networks. Proceedings of the National Academy of Sciences of the United States of
America, 113(18), 5130-5135.

Examples
three numeric vectors corresponding to three continuous random variables
x <- c(0.0, 0.2, 0.2, 0.7, 0.9, 0.9, 0.9, 0.9, 1.0)
y <- c(1.0, 2.0, 12, 8.0, 1.0, 9.0, 0.0, 3.0, 9.0)
z <- c(3.0, 7.0, 2.0, 11, 10, 1@, 14, 2.0, 11)

corresponding joint count table estimated by "uniform width” algorithm
count_xyz <- discretize3D(x, y, z, "uniform_width")

the joint probability distribution table of the count data
library("entropy")
probs_xyz <- freqgs.empirical(count_xyz)

corresponding part mutual information
PMI.plugin(probs_xyz)

Index

CMI.measure, 2
CMI.plugin, 3

discretizelD, 4
discretizeld.uniform_frequency, 5
discretizeld.uniform_width, 6
discretize2D, 6
discretize2d.uniform_frequency, 7
discretize2d.uniform_width, 8
discretize3D, 9
discretize3d.uniform_frequency, 10
discretize3d.uniform_width, 11

II.measure, 11
II.plugin, 13

MI.measure, 14
MI.plugin, 15

PID.measure, 16
PID.plugin, 17
PMI.measure, 18
PMI.plugin, 19

21

	CMI.measure
	CMI.plugin
	discretize1D
	discretize1d.uniform_frequency
	discretize1d.uniform_width
	discretize2D
	discretize2d.uniform_frequency
	discretize2d.uniform_width
	discretize3D
	discretize3d.uniform_frequency
	discretize3d.uniform_width
	II.measure
	II.plugin
	MI.measure
	MI.plugin
	PID.measure
	PID.plugin
	PMI.measure
	PMI.plugin
	Index

